skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pinjari, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Novel push-pull systems comprised of triphenylamine-tetracyanobutadiene, a high-energy CT species is linked to a near-IR sensitizer, azaBODIPY, for promoting excited state CS. These new systems revealed panchromatic absorption due to combined effect of intramolecular CT, and near-IR absorbing azaBODIPY. Using electrochemical and computational studies, energy levels were established to visualize excited state events. Fs-TA studies were performed to monitor excited state CT events. From target analysis, the effect of solvent polarity, number of linked CT entities, and excitation wavelength dependence in governing the lifetime of CS states was established. Electron exchange between two TPA-TCBD entities in 3 seem to prolong lifetime of the CS state. Importantly, we have been successful in demonstrating efficient CS upon both high-energy CT and low-energy near-IR excitations, signifying importance of these push-pull systems for optoelectronic applications operating in the wide optical window. 
    more » « less